Three Dimensional Sensing by Digital Video Fringe Projection

Matthew J. Baker
B.E. Telecommunications (Hons),
University of Wollongong

A Thesis presented for the degree of
Doctor of Philosophy

School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong,
Australia,
April 2008

Thesis supervisors: A/Prof. Jiangtao Xi and Prof. Joe F. Chicharo
This thesis is dedicated to my family and friends.
Abstract

Fast, high precision and automated optical noncontact surface profile and shape measurement has been an extensively studied research area due to the diversity of potential application which extends to a variety of fields including but not limited to industrial monitoring, computer vision, virtual reality and medicine. Among others, structured light Fringe Projection approaches have proven to be one of the most promising techniques. Traditionally, the typical approach to Fringe Projection 3D sensing involves generating fringe images via interferometric procedures, however, more recent developments in the area of digital display have seen researchers adopting Digital Video Projection (DVP) technology for the task of fringe manufacture. The ongoing and extensive exploitation of DVP for Fringe Projection 3D sensing is derived from a number of key incentives the projection technology presents relative to the more traditional forms of projection. More specifically, DVP allows for the ability to accurately control various attributes of the projected fringe image at high speed in software, along with the capabilities to develop multi-channel techniques via colour projection. Furthermore, considering the typical DVP source is capable of projecting a standard 24 bit bitmap computer generated image, when interfaced to a personal computer, DVP makes for a very affordable projection source. However, despite the aforementioned incentives, in contrast to the more traditional methods of generating fringe images, the digitally projected fringe signal presents a number of shortcomings which ultimately hinder the effective application of the technology for Fringe Projection 3D sensing.

This thesis aims to improve the effectiveness of the deployment of DVP technology for Fringe Projection 3D sensing approaches. The proposed initiative is facilitated through extensive analysis of the application of DVP technology for fringe processing, and furthermore by the proposal of new digital fringe calibration procedures.

Firstly, this work demonstrates a comprehensive survey of current Fringe Projection 3D sensing approaches including an introductory review of the rudimentary notion of projecting fringes for 3D data acquisition. The survey also provides a thorough description of the evolution of the three major forms of fringe processing i.e. Fringe Phase Stepping,
Fourier Fringe analysis and Direct Detection.

The limitations of DVP for Fringe Projection are demonstrated through the development of a novel fringe phase emulation approach. The phase emulation approach is subsequently employed to establish empirical insight into the application of DVP technology for Fringe Projection. More specifically, the preliminary empirical analysis is used to test the veracity of the application of the two chief DVP technologies (Liquid Crystal Display, LCD and Digital Light Processing, DLP, Texas Instruments) for Fringe Projection. Through this study the camera / projector non-linear intensity response is shown to be the single most significant shortcoming inherent to DVP based Fringe Projection implementations.

Following the findings of the preliminary empirical analysis the influence of the Display Gamma attributes of the projection system is extensively investigated. The harmonic structure of a typical digitally projected fringe signal is examined and an approximate analysis framework proposed. The framework is subsequently utilised to form a set of equations defining the true γ sensitivity of a range of highly exploited fringe processing techniques. The approximate analysis is later verified and the practical significance of the findings demonstrated. Through this study the true nature of the Display Gamma related phase measuring residual error is revealed.

With the aid of a verified framework, investigations into additional Display Gamma related Fringe Projection phenomena is undertaken. More specifically, the optimisation of digitally projected fringes by fringe parameter manipulation is demonstrated. The temporal nature of digitally projected fringe images is studied for the well exploited single shot Fourier Transform Profilometry technique and the digital fringe harmonic dependence on the projector optical modulation transfer function is revealed. Subsequently, the elimination of Display Gamma related Fringe Projection phase measuring residual error for phase stepping techniques by projector defocus optimisation is shown.

Finally, a novel digital fringe calibration approach ideal for minimum shot fringe processing techniques is proposed. The calibration procedure is centered on the application of Artificial Neural Networks (ANNs) to correct the non-linear intensity distortion associated with the camera / projector system. Unlike previously proposed gamma correction techniques, the neural fringe calibration technique requires no additional data acquisi-
tion with effective calibration requiring no more than a single cross-section of a reference fringe. The neural network fringe calibration approach is also shown to significantly outperform simple filter based techniques of similar computational complexity. Given the reduced data requirements for the neural approach its application for multi-channel fringe calibration is also considered.
Certification

I, Matthew John Baker, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Matthew John Baker
17th February 2008
Acknowledgements

I would firstly like to convey my thanks to both my supervisors, Associate Professor Jiangtao Xi and Professor Joe Chicharo. Without their continual support, guidance and patience this research would not have been possible. I thank them both for providing me with freedom in my research and the opportunity to travel and present my research at international conferences.

I would like to thank former fellow PhD student Dr. Yingsong Hu for the many stimulating conversations and assistance in regard to many of the aspects of this research. I would also like to thank Dr. Enbang Li for his helpful discussions in the early stages of this work.

Special thanks goes to Dr. Mark O’dywer and Ying Que for sharing their PhD experience with me. Thanks to Mark for more recently reviewing sections of this dissertation and, moreover, for his continual reassurance that “things would be alright”, not to mention the interesting discussions over msn messenger. Thanks to Ying for his empathetic encouragement throughout the duration of the PhD program and particularly during the later write up stages.

Not to be missed is the acknowledgement of Dr. Philip Conder. Thanks Phil! (you got your acknowledgement).

Thank you to all my friends for facilitating the essential diversions necessary to maintain my sanity and renew focus over the duration of my studies. In particular, I would like to thank Melissa Kent. Special thanks to Mel for her continual and ongoing support as I rode the often emotionally grueling rollercoaster otherwise known as the PhD experience.

A very special thank you goes to my parents who have nurtured my desire to pursue “what makes you happy”. Thanks also to Mum and Dad for being a constant source of support both financially and generally through the ups and downs of life. I will un-
doubtedly never be able to repay the latter debts, however, I should be ok for the financial debts.... eventually.

Finally, a very special thank you to my son Khye. Khye’s very being is certainly without a doubt my greatest accomplishment and although he cannot read many of the words contained within this document watching him grow and learn how to has truly been an inspiration for the completion of this work.
List of Publications

Journal publications:

2. Matthew J. Baker, Joe Chicharo and Jiangtao Xi, “Accuracy Limitations in Profilometric Metrology Schemes using Digital Structured Light”, *Accepted subject to revisions, IEEE Transactions on Instrumentation and Measurement*

3. Matthew J. Baker, Jiangtao Xi and Joe Chicharo “The Implications of Display Gamma for Fringe Projection 3D sensing using Digital Video Projection”, *To be submitted to Applied Optics*

Conference publications:

tions, Boston, Massachusetts, USA, October 25-26, 2005, (EI: 06109749730).

Table of Contents

Abstract iii
Certification vi
Acknowledgements vii
List of Publications ix
Table of Contents xi
List of Abbreviations xv
List of Figures xvii
List of Tables xxii

1 Preliminaries 1
1.1 Introduction 1
1.2 Three-Dimensional Sensing 2
1.2.1 Photogrammetry Methods 3
1.2.2 Time-of-Flight Techniques 6
1.2.3 Interferometric Techniques 6
1.2.4 Structured Light Techniques 9
1.2.5 Applications 14
1.3 Motivation for this Research 16
1.4 Approach and Contributions of this Thesis 18
1.4.1 Overview of Structured Light 3D Sensing by Fringe Projection 18
1.4.2 Creating Structured Light 19
1.4.3 Fringe Projection and Display Gamma 19
1.4.4 Additional Display Gamma Phenomena 20
1.4.5 Digital Fringe Calibration using Neural Networks 20
1.5 Summary of Contributions in Order of Presentation 21

2 Overview of Structured Light 3D Sensing by Fringe Projection 23
2.1 Introduction 23
2.2 Optical Triangulation 23
2.2.1 Optical Arrangement 26
2.2.2 Extracting Height ... 27
2.3 Projecting Fringes ... 27
2.4 Fringe Processing Techniques 30
 2.4.1 Phase Measuring or Shifting 30
 2.4.2 Fourier Transform Fringe Processing 36
 2.4.3 Direct Phase Detection 46
2.5 Phase Unwrapping .. 49
 2.5.1 Phase Unwrapping Principle 49
 2.5.2 Path-Dependent Unwrapping 52
 2.5.3 Path-Independent Unwrapping 54
2.6 Calibration ... 56
2.7 Summary .. 57

3 Creating Structured Light Fringe Images 58
 3.1 Introduction .. 58
 3.2 Projection Technologies ... 58
 3.2.1 Analog Vs. Digital .. 59
 3.2.2 Analog Fringe Projection 59
 3.2.3 Digital Fringe Projection (DFP) 60
 3.3 Digital Video Projection Technology 61
 3.3.1 Liquid Crystal Display (LCD) 62
 3.3.2 Digital Light Processing (DLP) 65
 3.4 Digital Video Projection Signal Characteristics 67
 3.4.1 Finite Projection .. 67
 3.4.2 Projected Signal Geometric Structure 72
 3.5 Colour Projection .. 74
 3.5.1 Colour Theory ... 76
 3.5.2 Coupling of Colour Channels 80
 3.6 DLP Vs. LCD .. 82
 3.6.1 Empirical Procedure 82
 3.6.2 Results and Discussion 85
 3.7 Summary .. 91

4 Fringe Projection and Display Gamma 92
 4.1 Introduction .. 92
 4.2 Modeling a γ Distorted Fringe 94
 4.2.1 Harmonic Structure of γ Distorted Fringe 95
 4.3 Impact of Harmonics for Fringe Processing Phase Estimation
 4.3.1 Analytical Procedure 99
 4.3.2 Traditional Phase Measuring Algorithm 101
 4.3.3 90$^\circ$ 3 Step ... 104
 4.3.4 90$^\circ$ 3 Step with Phase Offset 107
 4.3.5 2+1 .. 108
 4.3.6 3+3 .. 109
 4.3.7 Double Three Step ... 111
 4.3.8 Fourier Transform Profilometry (FTP) 115
 4.4 Display Gamma Measurement Error 117
CONTENTS

4.4.1 Magnitude of Measurement Error 117
4.4.2 Relating Gamma and System Accuracy 117
4.4.3 Frequency Dependence 117

4.5 Simulation ... 119
4.5.1 Simulating an Appropriate Test Surface 119
4.5.2 Traditional Phase Measuring Algorithm 122
4.5.3 90° 3 Step .. 125
4.5.4 90° 3 Step with Phase Offset 125
4.5.5 2+1 ... 127
4.5.6 3+3 ... 129
4.5.7 Double Three Step 131
4.5.8 Fourier Transform Profilometry (FTP) 132
4.5.9 Magnitude of Measurement Error 134

4.6 Experimentation Evaluation 135
4.7 Summary ... 138

5 Additional Display Gamma Phenomena 140
5.1 Introduction ... 140
5.2 Fringe Offset and Contrast Parameter Manipulation 140
5.2.1 Empirical Verification 143
5.3 Temporal Gamma .. 145
5.3.1 FTP Temporal γ / Harmonic Error Analysis 146
5.3.2 Gamma Compensated Analysis 148
5.3.3 Simulation ... 149
5.3.4 Example FTP Reconstruction 150
5.3.5 Gauging the Magnitude of the Reference Ripple 151
5.3.6 Empirical Example FTP Reconstruction 154

5.4 Fringe Image Formation 155
5.4.1 Modeling the Optical Modulation Transfer Function 155
5.4.2 Elimination of γ Non-linear Luminance Effects for Stepping Techniques 156
5.4.3 Attenuating Higher Order Harmonics 158
5.4.4 Simulation ... 159
5.4.5 Empirical Verification 161
5.4.6 Display Gamma Phase Residual Frequency Dependence 162

5.5 Summary ... 163

6 Digital Fringe Calibration using Neural Networks 165
6.1 Introduction ... 165
6.2 Neural Computing 167
6.3 Proposed Neural Network Fringe Calibration 169
6.3.1 Neural Network Design 171
6.3.2 Noise Removal 172

6.4 Simulation .. 173

6.5 Performance Comparison with existing approaches 176
6.5.1 Simple Filter Based Technique 176
6.5.2 Double Three-Step 179
6.6	Experimental Verification	180
6.7	Multi-channel Digital Fringe Calibration using Neural Networks	183
6.7.1	Principle Digital Multi-channel Fringe Profilometry	184
6.7.2	Error Analysis	185
6.7.3	Proposed Multi-channel Fringe Calibration Technique	187
6.7.4	Simulation	188
6.7.5	Experimentation Verification	188
6.8	Summary	191
7	Conclusions and Suggestions for Further Research	193
7.1	Conclusions	193
7.2	Suggestions for Further Research	197
A	Finite Projection Empirical Verification	200
B	Physical Fringe Projection Arrangement	204
B.1	Projection	205
B.2	Acquisition	205
B.3	Software Interface	206
References	209	
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>2DFTP</td>
<td>Two-Dimensional Fourier Transform Profilometry</td>
</tr>
<tr>
<td>Am-Si</td>
<td>Amorphous Silicon</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>AOM</td>
<td>Acousto-Optic Modulator</td>
</tr>
<tr>
<td>CCD</td>
<td>Charged Couple Device</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Component</td>
</tr>
<tr>
<td>DFP</td>
<td>Digital Fringe Projection</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DLP</td>
<td>Digital Light Processing</td>
</tr>
<tr>
<td>DMD</td>
<td>Digital Micromirror Device</td>
</tr>
<tr>
<td>DPD</td>
<td>Direct Phase Detection</td>
</tr>
<tr>
<td>DVP</td>
<td>Digital Video Projection</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>FTP</td>
<td>Fourier Transform Profilometry</td>
</tr>
<tr>
<td>I3PSP</td>
<td>Improved Three Step Phase Stepping Profilometry</td>
</tr>
<tr>
<td>IFTP</td>
<td>Improved Fourier Transform Profilometry</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LCOS</td>
<td>Liquid Crystal on Silicon</td>
</tr>
<tr>
<td>MEMS</td>
<td>MicroElectroMechanical System</td>
</tr>
<tr>
<td>MFTP</td>
<td>Modified Fourier Transform Profilometry</td>
</tr>
<tr>
<td>MMP</td>
<td>Modulation Measurement Profilometry</td>
</tr>
<tr>
<td>OPD</td>
<td>Optical Path Difference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase Locked Loop</td>
</tr>
<tr>
<td>PMP</td>
<td>Phase Measuring Profilometry</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>Polycrystalline Silicon</td>
</tr>
<tr>
<td>PSD</td>
<td>Position Sensitive Detector</td>
</tr>
<tr>
<td>PSI</td>
<td>Phase Shifting Interferometry</td>
</tr>
<tr>
<td>PSP</td>
<td>Phase Stepping Profilometry</td>
</tr>
<tr>
<td>SLM</td>
<td>Spatial Light Modulator</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SPD</td>
<td>Spatial Phase Detection</td>
</tr>
<tr>
<td>TFT</td>
<td>Thin Film Transistor</td>
</tr>
<tr>
<td>TI</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>TN</td>
<td>Twisted Nematic</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Simple Telecentric Optical Triangulation 24
2.2 Simple Full Field Optical Triangulation via the projection of a Structured Light Pattern .. 25
2.3 Typical Crossed Optical Axes arrangement 26
2.4 Diverging Illuminance:- Typical Crossed Optical Axes arrangement 28
2.5 Example Projecting Fringes .. 29
2.6 Example phase modulated sinusoidal Fourier Spectra 38
2.7 Example Baseband Fourier Spectra $Q(f, y)$ 39
2.8 Example: General Fourier Spectra $G(f, y)$ for a Projected Fringe 41
2.9 Typical Direct Phase Detection process 48
2.10 Wrapped and Unwrapped Phase Map 50
2.11 Cross-sections of Wrapped and Unwrapped Phase Maps of Figures (2.10) (a) and (b) .. 50
2.12 Independent Fringe Paths ... 53
3.1 Generalised schematic of the major optical and electrical components of a LCD .. 63
3.2 (a) Single Panel LCD. (b) Three panel Poly-Si LCD 64
3.3 (a) Two Digital Micromirror Device (DMD) Pixels. (b) Digital Micromirror Device (DMD) functionality. (c) Example of a single chip DLP projection system ... 66
3.4 Screen Door Effect .. 69
3.5 Finite Projection Characteristic .. 70
3.6 Projected Pixel Size Variation in the x direction 73
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Camera / Projector Intensity Response for various γ</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Distorted Fringe Cross-section</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Electromagnetic Spectrum</td>
<td>77</td>
</tr>
<tr>
<td>3.10</td>
<td>Spectral sensitivity curves for the short, medium and long cones</td>
<td>77</td>
</tr>
<tr>
<td>3.11</td>
<td>Colour Matching Functions</td>
<td>78</td>
</tr>
<tr>
<td>3.12</td>
<td>CIE Colour Matching Functions</td>
<td>79</td>
</tr>
<tr>
<td>3.13</td>
<td>CCD Filter response</td>
<td>81</td>
</tr>
<tr>
<td>3.14</td>
<td>Arbitrary Phase Distribution $\phi(x)$</td>
<td>84</td>
</tr>
<tr>
<td>3.15</td>
<td>Greyscale LCD DLP sample cross-sections for both low and high frequency cases</td>
<td>86</td>
</tr>
<tr>
<td>3.16</td>
<td>Multi-channel LCD DLP sample cross-sections for both low and high frequency cases</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>e_n, $1 < \gamma < 3$, for normalised fringe parameters $a = b$</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Power ratio p, 2nd order harmonic to fundamental Vs. γ, for normalised fringe parameters $a = b$</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Traditional 3 Step PMP 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>90° 3 Step 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>Maximum phase measuring error, δ_{max}, for the 90° 3 Step for various p corresponding to $1 < \gamma < 3.$</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>Minimum phase measuring error, δ_{min}, for the 90° 3 Step for various p corresponding to $1 < \gamma < 3.$</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>90° 3 Step with Phase Offset 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$</td>
<td>108</td>
</tr>
<tr>
<td>4.8</td>
<td>2+1 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$</td>
<td>110</td>
</tr>
</tbody>
</table>
4.9 3+3 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$ 112
4.10 $\varepsilon_{max}(x, y)$ as a function of p for the 3+3 2nd order harmonic phase measuring residual 112
4.11 Double Three Step 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$ 114
4.12 FTP 2nd order harmonic phase measuring residual for constant phase modulation with $p = 0.082$ corresponding to $\gamma = 2.2$ for fringe offset and contrast parameters $a = b$ 116
4.13 Maximum Absolute Measurement Error, ϵ Vs. γ for fringe parameters $a = b$ 118
4.14 Simulated Phase Distribution $\phi(x, y)$ 121
4.15 Simulated Fringes, $\gamma = 2.2$ 122
4.16 3 Step PMP Gamma distortion Simulation 123
4.17 4 Step PMP Gamma distortion Simulation 124
4.18 90° 3 Step Gamma distortion Simulation 126
4.19 90° 3 Step with Phase Offset Gamma distortion Simulation 127
4.20 2+1 Gamma distortion Simulation 128
4.21 90° Residual Functions 129
4.22 3+3 Gamma distortion Simulation 130
4.23 3+3 2nd order harmonic Simulation 131
4.24 Double Three Step Gamma distortion Simulation 132
4.25 Fourier Transform Profilometry Gamma distortion Simulation 133
4.26 Various Fringe Processing technique and corresponding γ sensitivity, ϵ (mm) 134
4.27 Experimental Reconstructions 136

5.1 3 Step PMP Maximum absolute error, $a = b$, $a = 0.6$, $b = 0.4$ and $a = 0.8$, $b = 0.2$ 142
5.2 Percentage Improvement in system accuracy, for \(a = 0.6, b = 0.4 \) and \(a = 0.8, b = 0.2 \) relative to \(a = b \) Vs. \(\gamma \) 142

5.3 Fringe parameter manipulation experimental results, 3-Step PMP reconstruction .. 144

5.4 Cross-section of reconstructed diffuse surface for fringe parameters, \(a = b, a = 0.6, b = 0.4 \) and \(a = 0.8, b = 0.2 \) .. 145

5.5 Maximum absolute profile measurement error: \(\gamma \pm 5\% \) 150

5.6 Temporal Variation in \(p \) ... 151

5.7 Simulated Reconstruction ... 152

5.8 Temporal Reference Plane Residual Function, for \(p_0 = 0.1084 \) i.e. \(\gamma_0 = 2.47 \) and \(p = 0.0753 \) i.e. \(\gamma = 2.13 \) 153

5.9 Empirical FTP reconstruction .. 154

5.10 Simulated Reconstructions ... 159

5.11 Empirical Reconstructions .. 161

5.12 Cross-sections of Empirical Reconstructions 162

6.1 Simple Neuron ... 168

6.2 Proposed Multilayer Signal Mapping Calibration Neural Network for arbitrary \(a \in n = 0, 1, 2, 3...N \) .. 170

6.3 Simulated phase distribution, reference / deformed fringe and fringe cross-section .. 175

6.4 Simulated reconstructed surfaces for 3-Step PMP and FTP with and without neural network calibration 177

6.5 Cross section of reconstructed surface for simulated fringe images for both calibrated and non-calibrated scenarios 178

6.6 Cross-sections of Reconstructed Surface for Non-calibrated, Neural Calibration and Filtering Calibration, 10 Tap and 100 Tap 180

6.7 Cross section of reconstructed surface for neural calibration and Double Three Step scenario ... 181

6.8 Experimental object and fringe patterns ... 182

6.9 Experimental reconstructions for 3 Step PMP and FTP techniques with and without neural network calibration 183
6.10 Cross section of Experimental reconstructions for both 3 Step PMP and FTP techniques .. 184
6.11 Simulated reconstructed surface with and without the proposed fringe calibration .. 189
6.12 Multi-channel Experimental Results .. 190
6.13 Cross-section of reconstructed diffuse surface seen in Figure 6.12(a) ... 192
A.1 Finite Projection Experimental Verification ... 202
B.1 Physical Fringe Projection Arrangement ... 204
B.2 Software Interface Screen Shot .. 207
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Greyscale reconstruction average phase errors and standard deviations</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Colour reconstruction average phase errors and standard deviations</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Absolute Relative Mean Error ϵ_2 for various γ</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Measured Absolute Maximum Measurement Error (ε_{\max}) and Estimated Absolute Maximum Measurement Error ($\bar{\varepsilon}_{\max}$)</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>Various β and the corresponding gain coefficients $T(kf_0)$ for $k = 1, 2, 3$</td>
<td>158</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean Error ($\bar{\epsilon}$), Standard Deviation ($\bar{\sigma}$) and Maximum Absolute Error (ϵ) in mm for the PMP 3 and 4 Step algorithms for both the Focused and Defocused cases with $\gamma = 3$</td>
<td>160</td>
</tr>
<tr>
<td>6.1</td>
<td>Calibrated and Non-Calibrated Absolute Mean Profile Reconstruction Errors and Standard Deviations</td>
<td>176</td>
</tr>
<tr>
<td>6.2</td>
<td>Absolute Mean Errors ($\bar{\epsilon}$) and Standard Deviations ($\bar{\sigma}$) for Neural and Filter Calibration</td>
<td>179</td>
</tr>
<tr>
<td>6.3</td>
<td>Absolute Mean Errors ($\bar{\epsilon}$) and Standard Deviations ($\bar{\sigma}$) for Neural and Double Three Step Technique</td>
<td>181</td>
</tr>
<tr>
<td>6.4</td>
<td>Calibrated and Non-calibrated mean absolute reconstruction errors and standard deviations</td>
<td>188</td>
</tr>
<tr>
<td>B.1</td>
<td>Projector Specifications</td>
<td>205</td>
</tr>
</tbody>
</table>